A REMARK ON ALMOST PERIODIC TRANSITION OPERATORS

BY I. GLICKSBERG

ABSTRACT

Results of Rosenblatt on almost periodic transition operators are extended to the reducible case.

Let X be a compact Hausdorff space and T a non-negative linear operator on C(X) with T1 = 1. Such an operator defines (and is defined by) a weak* continuous map $x \to t_x$ from X into P(X) (the space of probability measures on X) given by $Tf(x) = t_x(f) (= \int f(y)t_x(dy))$, $f \in C(X)$. We shall call the closure of the union of the supports of the measures t_x the support of T, denoted by Σ_T .

Recently Rosenblatt [4, 5] has considered the (admittedly rare) situation in which $S = \{T^n : n \ge 1\}$ is almost periodic in the sense that the orbit $\{T^n f : n \ge 1\}$ is conditionally compact in C(X) for all f in C(X). From [2] one knows that then $C(X) = C_0 \oplus C_p$, where C_0 is the closed invariant subspace consisting of all f with $||T^n f|| \to 0$, and C_p is the closed invariant span of the eigenvectors of T with eigenvalues of unit modulus. In [5] Rosenblatt showed that, when T is irreducible in a certain sense, C_p can be identified with C(Y) for some quotient space Y of X, while T is induced on C(Y) by a self-homeomorphism of Y. We wish to point out a very simple derivation of a stronger assertion, which in Rosenblatt's context says Y is a compact monothetic group on which his self-homeomorphism is a translation.

To begin we recall that in the strong operator topology the closure \overline{S} of $S = \{T^n : n \ge 1\}$ is a compact abelian semigroup whose kernel (least ideal) K is a compact topological group [2]. Indeed it is precisely the identity E of K which projects C(X) onto C_p and annihilates C_0 . Naturally the elements of K are non-negative and leave 1 fixed, so setting $e_x(f) = Ef(x)$, $f \in C(X)$, defines $e_x \in P(X)$. Evidently $C_p = EC(X)$ is conjugate closed.

With Σ_E the support of E, $A = C_p | \Sigma_E = EC(X) | \Sigma_E$ and C_p are isometric, so A is closed in $C(\Sigma_E)$: for $|e_x(f)| \le \sup |f(\Sigma_E)|$, and, applied to Ef, $|e_x(f)| = |e_x(Ef)| \le \sup |Ef(\Sigma_E)|$, whence $||Ef|| \le ||(Ef|\Sigma_E)||$. As a consequence Rosenblatt's argument [4] shows A is a subalgebra of $C(\Sigma_E)$, viz.: A^R (the set of

Received February 16, 1965.

real elements of A) is a sublattice of $C^R(\sum_E)$ since for $E\phi_i = \phi_i \in A^R$, i = 1,2, $E(\phi_1 \lor \phi_2) \ge E\phi_i = \phi_i$, i = 1,2, so $\psi = E(\phi_1 \lor \phi_2) - (\phi_1 \lor \phi_2) \ge 0$; and since $E\psi = 0$, ψ vanishes on Σ_E . So by Stone's proof of the Stone-Weierstrass theorem, A^R (and thus A) is an algebra.

Consequently A = C(Y) for some factor space Y of Σ_E . Now trivially $k = kE \in K$ has support $\Sigma_k \subset \Sigma_E$, since if $f \in C(X)$ vanishes on Σ_E then kf = kEf = k0 = 0. Since C_p is invariant for each k in K (as for all elemnts of \bar{S}), k actually yields a well defined operator $(f \mid \Sigma_E \to kf \mid \Sigma_E)$ on $A = C_p \mid \Sigma_R$. So K acts as a group of operators on A, and evidently $k \to kf$ is strongly continuous as a map into A since it coincides with $k \to kg \mid \Sigma_E$ for any extension $g \in C(X)$ of f, and $k \to kg$ is strongly continuous. Viewed as operators on C(Y) then, K is a group of nonnegative operators leaving 1 fixed whose identity is the identity operator. So each adjoint k^* maps P(Y) onto itself, and thus maps extreme points onto exteme points: with μ_v the unit mass at y, $k^*\mu_v = \mu_{k(v)}$ for some unique k(y) in Y. But

$$(1) (k,y) \to k(y)$$

is continuous since this amounts to continuity of

$$(k, y) \to f(k(y)) = k^* \mu_v(f) = k f(y)$$
, all $f \in C(Y)$,

and that follows from the strong continuity of $k \to kf$. Hence each element k of K induces a self-homeomorphism $k(\cdot)$ of Y, which in turn induces the action of k on C(Y): $kf = f \circ k(\cdot)$. Thus K, with the action (1), gives rise to a transformation group on Y which yields the action of K on $A = C_P | \Sigma_E$, and in particular that of $k_0 = TE$.

Having identified C(Y) and $EC(X)|_{\Sigma_E}$ we can of course compose $Ef|_{\Sigma_E}$ with an element $k(\cdot)$ of our transformation group on Y, and thus write, without ambiguity, $(f)|_{\Sigma_E} = k(f|_{\Sigma_E}) = (f|_{\Sigma_E}) \circ k(\cdot)$ if f = Ef. To obtain this action of T (hence that of $TE = k_0$) on $C_p = EC(X)$ then we note that for any x in X and f = Ef, $Tf(x) = TEf(x) = k_0f(x) = Ek_0f(x) = e_x(k_0f|_{\Sigma_E})$, so

(2)
$$Tf(x) = e_x([f \mid \Sigma_E] \circ k_0(\cdot)), \quad f \in EC(X).$$

Noting that the powers of $k_0 = TE$ are dense in K = SE since those of T are dense in S we have proved half of the following

THEOREM. A non-negative operator T with T1 = 1 has $S = \{T^n : n \ge 1\}$ almost periodic if and only if

- (i) there is a projection E in the strong operator closure of S,
- (ii) there is a quotient space Y of Σ_E for which $EC(X) \mid \Sigma_E$ is precisely C(Y) (as naturally imbedded in $C(\Sigma_E)$),
- (iii) a compact (monothetic) transformation group K acts on Y, with the action of T on EC(X) that induced by a generator k_0 of K, as in (2).

⁽¹⁾ The second k is our operator on $A = C_p | \Sigma_E$.

"If" is easily proved by showing conditional compactness of orbits for f in (I - E)C(X), and then for f in EC(X), as follows.

Suppose the net $T^{n_{\delta}} \to E$ strongly. For $f \in (I - E)C(X)$, Ef = 0, so given $\varepsilon > 0$, $||T^n f|| \le ||T^n \delta f|| < \varepsilon$ for $n \ge n_{\delta}$, some δ , whence $||T^n f|| \to 0$ and our conditional compactness is apparent.

On the other hand, action of T on EC(X) is determined on Σ_E , by (2), which also shows EC(X) and $EC(X) \mid \Sigma_E$ are isometric. Thus our conditional compactness will follow from that of the corresponding orbit in C(Y), which itself follows directly from the compactness of K and the fact that $k \to f \circ k(\cdot)$ is strongly continuous for any transformation group on a compact space.

REMARKS. 1. In case $S = \{T^n : n \ge 1\}$ is weakly almost periodic (i.e., $\{T^n f : n \ge 1\}$ is conditionally weakly compact for each f in C(X)), (i) - (iii) still hold if "strong" is replaced by "weak" in i). Indeed E is then the identity of the least ideal K of the weak operator closure of S, which is still [2, 8.1] a compact group in the strong operator topology, so that the same proof applies. Needless to say, in this situation C_0 (the nullity of E) is not so simply described.

(More generally the same proof yields (i)-(iii)) (with obvious modifications) for any (weakly) almost periodic semigroup S of non-negative T with T 1=1 for which the conclusions of [2, 4.11] hold (in particular for S amenable [1]), with C_0 and C_p the subspaces defined in [2].)

2. Note that if $X = \Sigma_E$, the natural decomposition of Y into orbits lifts to a decomposition \mathscr{F} of X for which $x \in F \in \mathscr{F}$ implies the support of t_x is contained in F. Indeed if $f \in C(Y)$, $0 \le f \le 1$, and f = 1 on the orbit of the image y of x then viewing f as an element of C_p we have $Tf(x) = f(k_0(y)) = 1 = t_x(f)$, so that t_x is carried by $f^{-1}(1)$, hence by an arbitrary neighborhood of F if f is chosen appropriately, which yields the assertion.

Thus we may define operators $T_F: C(F) \to C(F)$ for which $Tf \mid F = T_F(f \mid F)$, $f \in C(X)$, and so in a sense decompose T into irreducible parts. As is easily seen the case in which \mathscr{F} is a singleton is precisely Rosenblatt's irreducible case, and then Y and K can be identified.

- 3. That identification is made possible by the fact that our operator group K, in its role as a transformation group on Y, always acts effectively; i.e., k(y) = y for all y implies k = E. For it clearly implies kf = f for all f in C_p , whence kf = kEf = Ef for all f in C(X).
- 4. Whenever C_p is finite dimensional, as in the special case in which T is a compact operator (where S is necessarily almost periodic), one easily obtains parallels to the results obtainable when T is compact [3, §8]. Indeed if f_1, \dots, f_n are independent eigenfunctions spanning C_p , corresponding to eigenvalues $\lambda_1, \dots, \lambda_n$, the fact that K must be finite (since Y is, and K is effective) shows TE is of finite order $N \le n!$ and each λ_i is a root of unity. Moreover since Ef is uniquely expres-

sible as $\sum_{i=1}^{n} c_i(f) f_i$ while $f \to c_i(f)$ is continuous, we have unique complex measures μ_i with

(3)
$$Ef = \sum_{i=1}^{n} \mu_i(f) f_i, \quad f \in C(X),$$

necessarily biorthogonal to the f_i . And $T^*\mu_i = \lambda_i\mu_i$: for given any f in C(X), $g = \Sigma \lambda_j^{-1} T^*\mu_j(f) f_j - Ef$ is an element of C_p with $Tg = \Sigma T^*\mu_j(f) f_j - TEf = \Sigma \mu_j(Tf) f_j - TEf = ETf - TEf = 0$ since \bar{S} is commutative. But T acts as an invertible on C_p , so g = 0, $Ef = \Sigma \lambda_j^{-1} T^*\mu_j(f) f_j$, whence $T^*\mu_j = \lambda_j\mu_j$ by uniqueness of the μ_i .

Lastly, from the fact that $T^N E = (TE)^N = E$ one concludes that $T^{Nj} \to E$ strongly as $j \to \infty$; for any strong cluster point k of the sequence must lie in K, as is easily seen, so that $T^{Nj}E = E$ implies k = kE = E. Since S is compact in the strong operator topology, our convergence is assured.

5. Finally, we note that invariant integration over K can be used to obtain analogues of the other results of Rosenblatt [5], while the eigenfunctions f spanning $C_p | \Sigma_E$ are easily obtained; each is a (common) eigenfunction (with unimodular eigenvalue) of each k in K, and since $k \to kf$ is continuous, $kf = \chi(k)f$ for some character χ of K. Thus each such f coincides on each orbit in f with a multiple of a fixed character f of f and any such function is obviously an eigenfunction in f and f are f and f are computed via (2).)

BIBLIOGRAPHY

- 1. M. M. Day, Amenable semigroups, Illinois J. Math., 1 (1958), 509-543.
- 2. K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- 3. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N.S.) 3 (1948), 3-95 Amer. Math. Soc. Translation 26.
- 4. M. Rosenblatt, Equicontinuous Markov Operators, Theory of Probability and its Applications, 9 (1964), 205-222.
 - 5. M. Rosenblatt, Almost periodic transition operators..., J. Math. Mech. 13 (1964), 837-847.

University of Washington, Seattle, Washington